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Abstract
We study the structure and dynamics of the infinite sequence of extensions
of the Poincaré algebra whose method of construction was described in a
previous paper (Bonanos and Gomis J. Phys. A: Math. Theor. 42 (2009) 145206
(arXiv:hep-th/0808.2243)). We give explicitly the Maurer–Cartan (MC) 1-
forms of the extended Lie algebras up to level 3. Using these forms and
introducing a corresponding set of new dynamical couplings, we construct
an invariant Lagrangian, which describes the dynamics of a distribution of
charged particles in an external electromagnetic field. At each extension, the
distribution is approximated by a set of moments about the world line of its
center of mass and the field by its Taylor series expansion about the same line.
The equations of motion after the second extensions contain back-reaction
terms of the moments on the world line.

PACS numbers: 02.20.Qs, 02.70.Wz, 11.30.Cp

1. Introduction

In a recent paper [1], we have studied aspects of the Chevalley–Eilenberg cohomology of the
Galilei and Poincaré groups. In particular, we have seen that, at degree two, there is an infinite
sequence of Lie algebra extensions, beginning with the Galilei or Poincaré algebras. We
recall that the extensions found are non-central since the corresponding generators transform
non-trivially under the corresponding normal subalgebra of the unextended algebra.

In this paper, we study further the infinite sequence of extensions of the Poincaré algebra.
We study the tensor structure of the extensions and their physical interpretations. It is known
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that the Poincaré group in d + 1 (d > 1) has no central extensions4 and that it has a non-central
antisymmetric tensor extension [8]. Physically, this extension corresponds to the symmetries
of a relativistic particle in a constant electromagnetic field and is known as the Maxwell group
[9, 10]. A modification of the Poincaré algebra having only two Lorentz generators, that
leaves a constant background electromagnetic field invariant, allows an extension with two
central charges that can be interpreted as the electric and magnetic charge (BCR algebra [11]).
Non-central extensions have also been considered for the diffeomorphism gauge algebra, see
for example [12].

Both central and non-central extensions are controlled by Chevalley–Eilenberg
cohomology theory, see for example [13]. Here we compute in a systematic, almost
algorithmic5, way the most general CE cohomology groups at form degree two. As
we will see, the non-trivial forms belong to different representations of the subgroup of
Lorentz transformations of the Poincaré group, in general with mixed symmetries. The
Lorentz transformations are a subgroup of the automorphism group and constitute a normal
subgroup of each extended group. We can associate with any non-central extension a Young
tableau.

As discussed in [1], the first non-central extension of the Poincaré algebra is obtained by
calculating all possible non-trivial closed 2-forms of the subgroup of space–time translations.
The forms are closed with respect to the exterior differential operator d. The complete
extended algebra is constructed from the original algebra and the extensions by incorporating
their transformation properties under Lorentz transformations, which is equivalent to replacing
the exterior differential operator d by the corresponding ‘covariant’ operator d + M∧, M being
the zero-curvature connection associated with the Lorentz generators: dM + M ∧ M = 0.

Once we have an extended algebra, we can further extend it by applying the same
procedure to an extended set of ‘translations’ which includes all generators except those of the
Lorentz subgroup. In this way, we obtain new extensions whose generators belong to higher
dimensional representations of the Lorentz group. This procedure does not end resulting in
an infinite sequence of groups—extensions of the Poincaré group. In the limit, our procedure
formally defines an infinite Lie algebra. However, we cannot prove this result.

We do not have a precise mathematical interpretation for this infinite Lie algebra. We find
it intriguing, however, that the generator content of this algebra is organized in levels like the
Lorentzian Kac–Moody algebras that are conjectured to be a symmetry of supergravity; see,
for example, [15] for the E11 approach and [16] for the E10 approach.

In order to obtain a possible physical interpretation of this infinite sequence of extensions
of the Poincaré group, we construct a relativistic particle Lagrangian, invariant under the
extended algebra, by using the MC forms. We also introduce tensor coupling ‘constants’
that we consider as new dynamical variables. These tensor couplings are invariant under the
extended symmetries.

The form of the equations of motion following from this Lagrangian leads us to the
conclusion that the physical system in question is a distribution of charged particles, described
collectively as a particle with a set of multipole moments, moving in a fixed background
electromagnetic field. The multipoles can be considered as Goldstone bosons. The background
field is described by its Taylor series expansion about the world line of the ‘particle’, higher

4 In 1 + 1 dimensions, there is one central extension [2], which has been used to study several problems of gravity
and Moyal quantization, see for example [3–5]. Also, in spaces R2n and R4n with automorphism groups U(n) and
Sp(n) × SU(2) (Kähler and hyper-Kähler geometries), Galperin et al [6, 7] have obtained complex first-level central
extensions (a triplet in hyper-Kähler).
5 The calculations make use of the first author’s Mathematica package EDC (exterior differential calculus) [14]. The
procedure is described in detail in [1].
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terms in the series (and higher moments) appearing with every extension. Moreover, new terms
in the equation of motion of the ‘particle’ due to back-reaction terms involving the moments
appear. These results are obtained by integrating the equations of motion for the coupling
fields and plugging the solutions into the equations of motion of the particle coordinates. Once
we choose a particular solution, the equations of motion for the particle coordinates imply a
spontaneous breaking of the symmetries of the extended algebra.

The organization of the paper is as follows. In section 2, we introduce our notation and
conventions and obtain the first-level extensions. We then find explicit expressions for the
generators of the extended group, construct the Lagrangian and deduce the transformations of
the fields that leave the Lagrangian invariant. Finally, we obtain the equations of motion for
all dynamical variables. In sections 3 and 4, we repeat these steps for the second and third
extensions. We also give the defining equations for the fourth-level extensions. In section 5,
we point out that it is advantageous to consider the Young Tableau symmetries of the different
extensions, and how symmetry considerations can determine the structure of higher extensions.
Finally, in section 6, we compare our results with other approaches for constructing theories
with higher symmetry and discuss the implications.

2. The Poincaré group in 3+1 dimensions

The generators of the unextended Poincaré algebra are the translations Pa and the Lorentz
transformations Mab, where the tensor indices take the values (0, 1, 2, 3). Denoting by ηab

the Minkowski metric, the algebra is given by6

[Mab,Mcd ] = −i(ηbcMad − ηbdMac + ηadMbc − ηacMbd),

[Pa,Mbc] = −i(ηabPc − ηacPb).
(2.1)

As described in [1], in order to construct the extensions we make use of the left invariant
Maurer–Cartan (MC) form, defined by

� = −ig−1 dg, (2.2)

where g represents a general element of the Poincaré group. The MC form satisfies the
Maurer–Cartan equation

d� + i� ∧ � = 0. (2.3)

In components, the MC 1-form is written, for a generic Lie algebra, as

� = XAXA, (2.4)

where XA are the generators of the Lie algebra satisfying

[XB,XC] = if A
BCXA (2.5)

and XA are corresponding 1-forms7. Throughout this paper, we use the same capital letters
in plain and calligraphic font to denote generators and associated 1-forms. The MC equation
(2.3) implies that the 1-forms XA satisfy

dXA = 1
2f A

BCXB ∧ XC. (2.6)

6 Although the algebra is real and the imaginary units can be made to disappear by replacing all generators G by iG′,
we prefer to leave the i’s in the equations because then we can interpret the generators as Hermitian operators.
7 In general, the generator indices will refer to multiple-index tensors with symmetries. When such indices are
summed as in (2.4), (2.5), additional numerical factors must be introduced to compensate for multiple appearances
of identical terms in the sum.
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For the Poincaré case, the MC 1-form (2.4) becomes

� = PaPa + 1
2MabMab, (2.7)

while the MC equation (2.3) in components is

dPa + Pc ∧ Mc
a = 0, dMab + Mac ∧ Mc

b = 0. (2.8)

The first step in the cohomological analysis is to freeze the Lorentz degrees of freedom
and construct the most general 2-form that can be built from the translations alone, Pa . The
MC equations for these generators (dPa = 0) are obtained by putting Mab → 0 in (2.8).
Then, we find that the most general closed invariant 2-form which cannot be written as the
differential of an invariant 1-form is

�2 = f[ab] Pa ∧ Pb (2.9)

where f[ab] is a constant second-rank antisymmetric tensor. Therefore, the non-trivial 2-form
extensions belong to an antisymmetric tensor representation of the Lorentz group. The 1-form
‘potentials’ associated with these closed 2-forms are denoted by Z [ab] and are defined by the
equation

dZ [ab] = Pa ∧ Pb. (2.10)

From this equation, we obtain the algebra of the corresponding generators, denoted by
Z[ab]. We find

[Pa, Pb] = +iZ[ab], (2.11)

which implies that there is no central extension of the Poincaré group.
With the rotations included, the extended set of MC 1-forms satisfy the equations

dPa = −Pc ∧ Mc
a,

dMab = −Mac ∧ Mc
b, (2.12)

dZ [ab] = −Z [ac] ∧ Mc
b − Ma

c ∧ Z [cb] + Pa ∧ Pb.

The associated algebra was introduced before in the literature [9–11]. It is known as the
Maxwell algebra.

2.1. Explicit parametrization

Here we will introduce explicit parameters labeling the group elements, which will induce an
explicit parametrization of all MC 1-forms in terms of the differentials of these parameters. We
will first obtain expressions for the MC 1-forms without the Lorentz generators. Specifically,
the general element of this coset of the extended group will be parametrized, locally, by

g = eiPax
a

e
i
2 Zabθ

ab

, (2.13)

where xa, θ [ab] are the group parameters associated with the generators Pa, Zab. The
component MC 1-forms (2.4) can be computed directly from definition (2.2) and the
commutator (2.11) using the Baker–Campbell–Hausdorff formula. The result is

Pa = dxa, Z [ab] = dθ [ab] + 1
2 (xa dxb − xb dxa). (2.14)

If we want to have the explicit expressions of these MC 1-forms when we include the
Lorentz degrees of freedom, the right-hand side of all vector and tensor expressions given
above must be multiplied by an appropriate orthogonal matrix, U, for each index:

Pa = U−1a
b dxb, Z [ab] = U−1a

p U−1b
q

(
dθ [pq] + 1

2 (xp dxq − xq dxp)
)
. (2.15)
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U depends on the parameters associated with the Lorentz generators and can be obtained by
adding appropriate terms to (2.13). In terms of U, the Lorentz MC 1-forms have the explicit
representation Ma

b = U−1a
c dUc

b.
The vector fields dual to these MC forms (when we freeze the Lorentz degrees of freedom)

are

Zab = −i
∂

∂θab
, (2.16)

Pa = −i

(
∂

∂xa
+

1

2
xr ∂

∂θar

)
, (2.17)

Mab = −i

(
xa

∂

∂xb
− xb

∂

∂xa
+ θa

r ∂

∂θbr
− θb

r ∂

∂θar

)
, (2.18)

and satisfy the commutators

[Mab,Mcd ] = −i(ηbcMad − ηbdMac + ηadMbc − ηacMbd),

[Pa,Mbc] = −i(ηabPc − ηacPb),

[Pa, Pb] = +iZab,
(2.19)

[Mab, Zcd ] = −i(ηbcZad − ηbdZac + ηadZbc − ηacZbd),

[Pa, Zbc] = 0,

[Zab, Zcd ] = 0.

2.2. Particle Lagrangian and Noether charges

To obtain a physical interpretation, one possibility is to construct a particle Lagrangian that
is invariant under the extended Poincaré group using the nonlinear realization method [17]
for space–time symmetries, see for example [18]. A diffeomorphism-invariant free particle
Lagrangian is L0 = m

√−ẋ2
a and depends on the translation 1-forms only. A possible

Lagrangian including also the first extension 1-forms Zab (2.14) is

L = m

√
−ẋ2

a + 1
2fabZab = m

√
−ẋ2

a + 1
2fab(θ̇

ab + x[aẋb]), (2.20)

where we have introduced the antisymmetric tensor couplings fab(τ ) that are considered as
new dynamical variables, in addition to the group space coordinates (xa, θab), which are now
also functions of the particle proper time. The physical interpretation of the extra variables
θab, fab will be given after the equations of motion have been obtained.

This Lagrangian is invariant under translations8

δP xa = εa, (2.21)

δP θab = − 1
2 (εaxb − εbxa), (2.22)

δP fab = 0, (2.23)

and the non-vanishing shifts

δZθab = εab, δZfab = 0. (2.24)

The Noether charges associated with these symmetries are

Pa = pa − 1
2pabx

b, Zab = pab. (2.25)

8 The generators of these transformations are the right invariant vector fields.
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If we compute the Poisson bracket among these generators, we find

{Pa, Pb} = −Zab, (2.26)

i.e. we recover the algebra9 (2.11).
In the proper time gauge, the Euler–Lagrange equations of motion following from (2.20)

are

δθab → ḟ ab = 0, (2.27)

δfab → θ̇ ab + 1
2 (xaẋb − xbẋa) = 0, (2.28)

δxa → −mẍa + fabẋ
b = 0. (2.29)

Equation (2.29), with fab = e Fab, is the Lorentz force equation determining the motion
of a particle of mass m and charge e in an electromagnetic field Fab. Note that for this case, the
equation of motion for fab (2.28) does not affect the dynamics of the coordinates. This equation
tells us that θ̇ ab is proportional to the ab component of the angular momentum (or magnetic
moment) of the particle10. In other words, θab is a non-local function of the components of
the angular momenta of the particle.

Integration of the equation of motion associated with θ gives fab = f 0
ab = e F 0

ab. We see
that this solution spontaneously breaks Lorentz symmetry. If we substitute this solution in the
equation of motion for the variable x (2.29), we find that it describes the motion of a particle
in a constant, fixed EM field with

Fab = F 0
ab = constant. (2.30)

It can be obtained from the potential

Aa = − 1
2F 0

abx
b. (2.31)

3. Second-level extensions

One can obtain further extensions of the Poincaré group which lead to new generators in
higher dimensional representations of the Lorentz group. In order to find them, we apply the
same procedure as in the last section, at every level taking as ‘translations’ all generators of
the previous level other than the Lorentz ones, Mab.

For the second extension, we take as ‘translations’ the 1-forms

Pa, Z [ab]. (3.1)

The calculation results in 20 closed non-trivial 2-forms which can be written as the components
of the tensor11

2Pa ∧ Z [bc] − Pb ∧ Z [ca] − Pc ∧ Z [ab]. (3.2)

Again, introducing the second-level potential 1-form Ya[bc], with the same symmetries as the
above 2-form tensor and unfreezing the Lorentz freedom, we find

dYa[bc] = −Ma
s ∧ Ys[bc] − Mb

s ∧ Ya[sc] − Mc
s ∧ Ya[bs]

+ 2Pa ∧ Z [bc] − Pb ∧ Z [ca] − Pc ∧ Z [ab]. (3.3)

9 The reason for the overall sign difference from the starting algebra is that now the generators are active operators.
10 The terminology refers to the space–space components; the space–time components give a Lorentz-boosted
momentum (or dipole moment).
11 This tensor is antisymmetric in [bc] and its totally antisymmetric part vanishes. This leads to four identities,
εabcdPb ∧ Z [cd] = 0, leaving 4 × 6 − 4 = 20 independent components.
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The corresponding generators Ya[bc] appear in the commutators of the original translations
with the first-level extensions

[Pa, Z[bc]] = 2iYa[bc] − iYb[ca] − iYc[ab]. (3.4)

The complete set of the second extension commutators are

[Mab,Mcd ] = −i(ηbcMad − ηbdMac + ηadMbc − ηacMbd),

[Pa,Mbc] = −i(ηabPc − ηacPb),

[Pa, Pb] = iZab,

[Mab, Zcd ] = −i(ηbcZad − ηbdZac + ηadZbc − ηacZbd),

[Pa, Zbc] = i(2Yabc − Ybca − Ycab), (3.5)

[Zab, Zcd ] = 0,

[Ypab,Mcd ] = −i(ηbcYpad − ηbdYpac + ηadYpbc − ηacYpbd + ηpcYdab − ηpdYcab),

[Ypab, Zcd ] = 0,

[Ypab, Pc] = 0,

[Ypab, Yqcd ] = 0.

Note that, at this level, the operators Zab and Yabc generate an Abelian subgroup.

3.1. Explicit parametrization

Introducing the second extension parameters ξa[bc] (coordinates in group space) with the
symmetries of Ya[bc], the coset element in the second extension can be written as

g = eiPax
a

e
i
2 Zabθ

ab

e
i
2 Yabcξ

abc

. (3.6)

We can then compute, as before, the corresponding MC forms; the ones associated with the
translations and first extension are not modified, while the second extension MC forms are
found to be

Yabc = dξabc − 2 dxaθbc + dxbθca + dxcθab + 1
2xa(xb dxc − xc dxb). (3.7)

The differential operators dual to the 1-forms given above provide a representation of the
extended algebra (3.5) (in the summations below, differentiations with respect to variables
that are zero—θ00, ξ 011, etc—are omitted):

Yabc = −i
∂

∂ξabc
, (3.8)

Zab = −i
∂

∂θab
, (3.9)

Pa = −i

(
∂

∂xa
+

1

2
xr ∂

∂θar
+ θrs ∂

∂ξars
− θrs ∂

∂ξ rsa
− 1

2
xrxs ∂

∂ξ rsa

)
, (3.10)

Mab = −i

[
xa

∂

∂xb
− xb

∂

∂xa
+ θa

r ∂

∂θbr
− θb

r ∂

∂θar

+
1

2

(
ξa

rs ∂

∂ξbrs
− ξb

rs ∂

∂ξars

)
+ ξ rs

a

∂

∂ξ rsb
− ξ rs

b

∂

∂ξ rsa

]
. (3.11)
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3.2. Lagrangian associated with the second-level extension

When we include the second extension, the particle Lagrangian becomes

L = m

√
−ẋ2

a + 1
2fabZab + 1

2fabcYabc, (3.12)

where the new tensor couplings fabc(τ ) have the symmetries of Yabc and, together with the
new group space coordinates ξabc(τ ), are considered as new dynamical variables.

Apart from the ordinary Lorentz transformations, the non-trivial transformations leaving
the Lagrangian invariant are

δP xa = εa, (3.13)

δP θab = − 1
2 (εaxb − εbxa), (3.14)

δP ξabc = −xa(εbxc − εcxb). (3.15)

δZθab = εab, (3.16)

δZξabc = 2xaεbc − xbεca − xcεab, (3.17)

δY ξabc = εabc, (3.18)

where εa, εab, εabc are arbitrary displacements of the group parameters. The conserved
quantities are written as

Q = εaPa + 1
2εabZab + 1

2εabcYabc, (3.19)

from which we obtain the Noether generators

Pa = pa − 1
2pabx

b + pbcax
bxc,

Zab = pab + xc(2pcab − pbca − pabc),

Yabc = pabc.

(3.20)

The Poisson brackets among these generators reproduce the algebra (3.5) up to an overall
minus sign.

The Euler–Lagrange equations of motion now take the form

δξabc → ḟ abc = 0, (3.21)

δθab → ḟ ab = (−2fcab + fabc + fbca)ẋ
c, (3.22)

δfabc → ξ̇ abc − 2ẋaθbc + ẋbθca + ẋcθab + 1
2xa(xbẋc − xcẋb) = 0, (3.23)

δfab → θ̇ ab + 1
2 (xaẋb − xbẋa) = 0, (3.24)

δxa → −mẍa + fabẋ
b = − 1

2 ḟ abx
b + 1

2 (−2fabc + fbca + fcab)θ̇
bc

− 1
2 (−2fbca + fcab + fabc)x

bẋc. (3.25)

Substituting for ḟ ab, θ̇ ab from (3.22), (3.24), we find that the rhs of (3.25) vanishes, so that
the equation of motion for xa depends only on fab:

−mẍa + fabẋ
b = 0. (3.26)

If we integrate equations (3.21) and (3.22) for fabc and fab, we get

fabc = f 0
abc, fab = (−2f 0

cab + f 0
abc + f 0

bca

)
xc + f 0

ab, f 0
··· = constant (3.27)

8
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Note that these solutions break the extended symmetry spontaneously. If we substitute these
expressions back in (3.26), we have

−mẍa + f 0
abẋ

b +
(−2f 0

cab + f 0
abc + f 0

bca

)
xcẋb = 0. (3.28)

The resulting equation of motion describes a particle in a given EM field which is linear in the
cartesian coordinates and can be obtained from the potential

Aa = F 0
cabx

bxc − 1
2F 0

abx
b, f 0

cab = eF 0
cab. (3.29)

What makes this possible is the symmetry properties of the quantities f 0
cab which imply

that the field strength fab (3.27) satisfies f[ab,c] = 0.
Note that, as in the previous level, the equations of motion for fab and fabc do not affect

the dynamics of the coordinates. The variable θab retains its old interpretation in terms of
the magnetic moment of the particle, while, from (3.23) with θab = 0, we see that ξabc is
related to the integral of the first moment of the magnetic moment, i.e. the magnetic quadrupole
moment (second moment of the current distribution). Thus, it appears that our physical system
is a distribution of charged particles, described collectively at this level as the motion of a
particle with two sets of moments θab, ξabc, moving in a given EM field. The non-locality
of the equations determining the moments suggests that the particles also interact among
themselves. This will become apparent at the next level where the equation determining xa

will acquire an extra force term proportional to the magnetic moment.
Writing (3.22) as dfab = (−2fcab + fabc + fbca) dxc, we can interpret the coefficients fabc

as giving the partial derivatives of fab.

4. Higher level extensions

In this section, we will consider explicitly the higher order extensions up to level 4. Here, as
we will see, a new phenomenon appears: we need more than one tensor to describe the new
extensions. Moreover, some of the lower level extensions no longer commute with themselves
or with the translations.

The procedure can be continued indefinitely. It will become apparent that, at level n,
several new tensor extensions of rank n + 1 appear.

4.1. Third extension

At the third level, the procedure gives 60 closed 2-forms which can be arranged as the
components of two fourth rank tensors with the following symmetries: S(ab)(cd)

1 ,S [ab][cd]
2 and

the additional antisymmetry S(ab)(cd)
1 = −S(cd)(ab)

1 and S [ab][cd]
2 = −S [cd][ab]

2 . These 1-form
potentials have, respectively, 45 and 15 independent components and satisfy the equations

dSabcd
1 = Pa ∧ Ycbd + Pa ∧ Ydbc + Pb ∧ Ycad + Pb ∧ Ydac

−Pc ∧ Yadb − Pc ∧ Ybda − Pd ∧ Yacb − Pd ∧ Ybca, (4.1)

dSabcd
2 = 4Zab ∧ Zcd + Pa ∧ Ybcd − Pb ∧ Yacd − Pc ∧ Ydab + Pd ∧ Ycab. (4.2)

In the third extension, the new non-vanishing commutators are those with a total of four free
indices. From (4.1), (4.2) it follows that they satisfy

[Zab, Zcd ] = 4iS2
abcd , (4.3)

[Pa, Ybcd ] = i
(
S1

acbd − S1
adbc

)
+

i

3

(
2S2

abcd − S2
acdb − S2

adbc

)
, (4.4)

9
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where the new generators S1
abcd , S

2
abcd are assumed to have the full symmetries of the

corresponding 1-form potentials.
The coset will now be written as

g = eiPax
a

e
i
2 Zabθ

ab

e
i
2 Yabcξ

abc

e
i
8 S1

abcdσ abcd
1 e

i
8 S2

abcdσ abcd
2 , (4.5)

where σabcd
1 , σ abcd

2 are new scalar parameters having the symmetries of Sabcd
1 ,Sabcd

2 . After a
long calculation, we obtain the following explicit expressions for the new MC 1-forms:

Sabcd
1 = dσabcd

1 − (dxaξ cbd + dxaξdbc + dxbξ cad + dxbξdac) + dxcξadb + dxcξbda

+ dxdξacb + dxdξbca + 1
2 [xaxc(x dx)bd + xbxd(x dx)ac], (4.6)

Sabcd
2 = dσabcd

2 − (dxaξbcd − dxbξacd − dxcξdab + dxdξ cab)

+ 2θab(dθcd + (x dx)cd) − 2θcd(dθab + (x dx)ab), (4.7)

where we have used the notation (x dx)ab = (xa dxb − xb dxa).

4.2. Third-order Lagrangian and equations of motion

With the third-order extensions, the particle Lagrangian becomes

L = m

√
−ẋ2

a + 1
2fabZab + 1

2fabcYabc + 1
8gabcdSabcd

1 + 1
8habcdSabcd

2 , (4.8)

where the new tensor couplings gabcd(τ ), habcd(τ ) have the symmetries of Sabcd
1 ,Sabcd

2 ,
respectively, and together with the new group space coordinates σabcd

1 , σ abcd
2 are also treated

as new dynamical variables.
This Lagrangian is invariant under the transformations found before plus the following

ones for the new variables

δpσ abcd
1 = − 3

2 (εaxbxcxd + εbxaxcxd − εcxaxbxd − εdxaxbxc), (4.9)

δZσ abcd
1 = 3(xaxdεbc + xaxcεbd + xbxcεad + xbxdεac), (4.10)

δY σ abcd
1 = xa(εcbd + εdbc) + xb(εcad + εdac) − xc(εadb + εbda) − xd(εacb + εbca), (4.11)

δS1σ
abcd
1 = εabcd

1 (4.12)

and

δpσ abcd
2 = (εaxb − εbxa)θcd − (εcxd − εdxc)θab, (4.13)

δZσ abcd
2 = εacxbxd + εbdxaxc − εadxbxc − εbcxaxd − 2εabθcd + 2εcdθab, (4.14)

δY σ abcd
2 = xaεbcd − xbεacd − xcεdab + xdεcab, (4.15)

δS2σ
abcd
2 = εabcd

2 . (4.16)

The conserved quantities are written as

Q = εaPa + 1
2εbcZbc + 1

2εabcYabc + 1
8εabcd

1 S1
abcd + 1

8εabcd
2 S2

abcd , (4.17)

10
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from which we obtain the Noether generators

Pa = pa − 1
2pabx

b + pbcax
bxc − 3

4p1
abcdx

bxcxd + 1
2p2

abcdx
bθcd (4.18)

Zbc = pbc + xd(2pdbc − pbcd − pcdb) + 3
2

(
p1

abcd − p1
acbd

)
xaxd

− 1
2

(
p2

abcd − p2
acbd

)
xaxd − p2

bcadθ
ad, (4.19)

Yabc = pabc + 1
2

(
p1

abcd − p1
acbd

)
xd + 1

3

(
2p2

dabc − p2
dbca − p2

dcab

)
xd, (4.20)

S1
abcd = p1

abcd , S2
abcd = p2

abcd . (4.21)

The Euler–Lagrange equations of motion can be reduced to (3.22), (3.23), (3.24) and the
following new equations:

δσ1
abcd → ġabcd = 0, (4.22)

δσ2
abcd → ḣabcd = 0, (4.23)

δgabcd → σ̇1
abcd = ẋa(ξ cbd + ξdbc) + ẋb(ξ cad + ξdac) + ẋc(ξ adb + ξbda)

+ ẋd (ξ acb + ξbca) − 1

2
[xaxc(xbẋd − xd ẋb) + xbxd(xaẋc − xcẋa)], (4.24)

δhabcd → σ̇2
abcd = ẋaξ bcd − ẋbξ acd − ẋcξ dab + ẋdξ cab

− θab(xcẋd − xd ẋc) + θcd(xaẋb − xbẋa), (4.25)

δξabc → ḟ abc = −ẋd (gabcd − gacbd) − ẋd

3
(2hdabc − hdbca − hdcab), (4.26)

δxa → −mẍa + fabẋ
b = 0, (4.27)

where, in reducing (4.25), (4.27), we have used (3.22), (3.23), (3.24). We should remark
that, as with (3.25), the rhs of (4.27) is not identically zero, but vanishes because of the other
equations of motion. An extra term that vanishes because of (3.24) also appears on the rhs
of (3.22).

As in the previous levels, the last terms in (4.25) allow us to relate σ1
abcd to the third-order

moments (octupole) of the current distribution. However, σ̇2
abcd which vanishes when θ and ξ

vanish, must be interpreted differently: it arises from nonlinear couplings of the current with
the quadrupole moment (ẋaξ cbd terms) as well as of θ with θ̇ (using (3.24); the last two terms
in (4.25) are 2 θab ˙θcd − 2θcd ˙θab).

Integrating (4.22), (4.23), (4.26) and substituting in (3.22), we obtain the equation satisfied
by fab:

ḟ ab = 3
(
g0

cabd − g0
cbad

)
xcẋd − (

2h0
cdab − h0

cabd − h0
cbda

)
xcẋd +

(−2f 0
cab + f 0

abc + f 0
bca

)
ẋc.

(4.28)

Writing 2xcẋd = d
dt

(xcxd − 2θcd), as follows from (3.24), we can integrate this equation to
get

fab = 3
4

(
g0

cabd − g0
cbad + g0

dabc − g0
dbac

)
xcxd + 1

4

(
h0

cabd − h0
cbad + h0

dabc − h0
dbac

)
xcxd

− 2h0
abcdθ

cd +
(−2f 0

cab + f 0
abc + f 0

bca

)
xc + f 0

ab. (4.29)

We observe that, when h0
abcd �= 0, the tensor fab depends on θab in addition to having terms

quadratic in the cartesian coordinates. Thus, only part of fab can be derived from a potential,
and the interaction described by fab can no longer be interpreted as a pure electromagnetic

11
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field. The part of fab that cannot be derived from a potential gives terms to the equation of
motion that couple to the magnetic moment. Thus we write (4.27) as

mẍa + 2h0
abcd ẋ

bθcd − h0
abcdx

bθ̇ cd = e Fabẋ
b, (4.30)

where Fab represents an ordinary external EM field, now quadratic in the coordinates,

Fab = 3
4

(
g0

cabd − g0
cbad + g0

dabc − g0
dbac

)
xcxd +

(−2f 0
cab + f 0

abc + f 0
bca

)
xc + F 0

ab. (4.31)

The symmetries of gabcd implies that F[ab,c] = 0 and thus can be derived from a potential.
The terms depending on h0

abcd in the equation of motion imply a damping effect due to the
magnetic moment. As the magnetic moment is determined by the position x, this describes a
back-reaction altering the time evolution of x. Thus the dynamics of the motion now depends
on the dynamics of the new variables θab. We can conjecture that at the next level the tensor
fab will contain terms depending on ξabc, terms cubic in xa and terms with the product θabxc,

and thus the equation of motion for the coordinates will also couple to the quadrupole moment.
As we did with (3.22), writing (4.26) as dfabc = −dxd(gabcd − gacbd) − dxd(2hdabc −

hdbca−hdcab)/3, we can interpret the coefficients gabcd and habcd as giving the partial derivatives
of fabc, which, in turn, determine the partial derivatives of fab. Thus gabcd and habcd are,
effectively, the second derivatives of fab. Of course, the physical meaning of these two types
of second derivatives is different. The terms with habcd, leading to non-zero f[ab,c], can be
interpreted as magnetic sources. It is known that Maxwell’s theory is consistent with the
existence of such sources. However, we prefer to interpret these terms as introducing a
coupling to the magnetic moment θ̇ ab in the equation of motion for the position variables.

The form (4.30) of the equation of motion, together with the equations determining the
evolution of the different moments (θab, ξabc, σ abcd , . . .), reinforce our conclusion, proposed
at the end of section 3, that the physical system described here is a distribution of charges
moving consistently (including effects due to non-vanishing moments) in a given EM field.
The description is approximated by a series expansion of the field and the corresponding
collection of moments of the current distribution, successive levels in the extension procedure
giving higher approximations.

At the mathematical level, the coordinates of the extended group space describe the
degrees of freedom in the multipole expansion of the current distribution and the induced
interactions between them. The symmetry group describes how changes in the coordinates
and multipole moments are interrelated in order that a self-consistent interpretation in terms of
moving charges in a given external EM field, including back-reaction terms, would be possible.

4.3. Fourth extension

At the fourth level, the procedure gives 204 new extensions which can be grouped as the
components of five different fifth rank tensors with definite symmetries. The corresponding
1-form generators, denoted by the symbols Ti , i = 1, . . . , 5, and having the symmetries
indicated, satisfy

dT (abcd)e
1 = P(a ∧ Sbcd)e

1 , (4.32)

dT (abc)(de)
2 = S(abc)d

1 ∧ Pe + S(abc)e
1 ∧ Pd − 4(Zd(a ∧ Ybc)e + Ze(a ∧ Ybc)d)

+ 4
3

(
P(a ∧ Sbcd)e

1 + P(a ∧ Sbce)d
1

)
, (4.33)

dT (abc)[de]
3 = (S(abc)d

1 ∧ Pe − S(abc)e
1 ∧ Pd + 8

5 (Zd(a ∧ Ybc)e − Ze(a ∧ Ybc)d)

× 6
5

(
Sadbe

2 ∧Pc−Saebd
2 ∧ Pc

)
(abc)

− 4
5

(
P(a ∧ Sbcd)e

1 − P(a ∧ Sbce)d
1

)
, (4.34)

12
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dT [abc][de]
4 = S [abc]d

2 ∧ Pe − S [abc]e
2 ∧ Pd + 4(Zd[a ∧ Ybc]e − Ze[a ∧ Ybc]d)

+ 4
3

(
P [a ∧ Sbcd]e

2 − P [a ∧ Sbce]d
2 + 2Ye[ab ∧ Zcd] − 2Yd[ab ∧ Zce]

)
, (4.35)

dT [abcd]e
5 = P [a ∧ Sbcd]e

2 + 2Ye[ab ∧ Zcd], (4.36)

where the subscript (abc) indicates the symmetry operation that must be applied to the
expression in parentheses. These fifth rank tensors have, respectively, 84, 60, 36, 20, 4
independent components. We will not investigate further the fourth level extensions.

5. Young tableau symmetries and possible fifth-level extensions

To understand the structure of the higher level extensions, it is helpful to discuss their symmetry
properties in terms of Young tableaux (YT). The YT symmetries of all generators (MC 1-forms)
up to level 4 are12

Pa , Zab , Yabc , Sabcd
1 , Sabcd

2 ,

T abcde
1 , T abcde

2 , T abcde
3 , T abcde

4 , T abcde
5 .

Note that completely symmetric YT do not appear, as the requirement that the exterior
derivative of these 1-forms be given in terms of the wedge product of lower generators implies
at least one antisymmetry. The fifth-level generators (MC 1-forms) will have six indices and
will transform as the components of sixth-rank tensors with the following possible (in four
dimensions) YT symmetries:

Wabcdef
1 , Wabcdef

2 , Wabcdef
3 , Wabcdef

4 ,

Wabcdef
5 , Wabcdef

6 , Wabcdef
7 , Wabcdef

8 .

The exterior derivative of each Wi tensor will then be given in terms of wedge products
of pairs of lower order generators whose YT can be combined to give the YT of Wi . For

example, the YT can be obtained by multiplying the following pairs of YT:

Thus, we expect dW (abcd)(ef )

2 to be given as a linear combination of the following four
terms: T (abcd)(e

1 ∧ Pf ), P(a ∧ T bcd)(ef )

2 , Ze(a ∧ Sbcd)f

1 + Zf (a ∧ Sbcd)e
1 and the (abcd)(ef )

part of Yabe ∧ Ycdf , which is, however, identically zero. Requiring the exterior derivative of
this linear combination to be zero, we determine the unknown coefficients (up to an overall
constant factor) and thus the equation defining W2:

dW (abcd)(ef )

2 = 10T (abcd)(e
1 ∧ Pf ) − 3P(a ∧ T bcd)(ef )

2 + 3
(
Ze(a ∧ Sbcd)f

1 + Zf (a ∧ Sbcd)e
1

)
.

(5.1)

12 The third-level extensions have no particular YT symmetry, but can be expressed in terms of such tensors:
S

(ab)(cd)
1 = YT(abc)d

31 + YT(abd)c
31 −YT(cda)b

31 −YT(cdb)a
31 , S

[ab][cd]
2 = YT[abc]d

211 −YT[abd]c
211 −YT[cda]b

211 + YT[cdb]a
211 , where

the indices on YT tensors indicate the number of boxes in each row of the YT diagram. Similarly, for the fourth
extension tensors Ti defined in subsection 4.3 to have the corresponding YT symmetry, certain symmetry operations
must be performed on each Ti .
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Not all possible YT symmetries with a given number of indices are present: already at level

3, the symmetry does not appear. Conversely, some YT symmetries may appear more
than once, i.e. the linear combination of possible 2-forms with a given symmetry may not be
unique. Due to computer memory limitations, we have done the fifth-level calculations in
three dimensions and found that the generator W7 does not appear, while the generators W3

and W5 appear with multiplicities 2 and 3, respectively (the generators W6 and W8, being
antisymmetric in four indices, cannot exist).

We observe that in the Lagrangian, the coupling to the most symmetric generator (say
k(abcd)e corresponding to T (abcd)e

1 ) will only contribute a term depending on the coordinates to
fab. Thus, restricting attention to these most symmetric extensions, fab will satisfy f[ab,c] = 0,13

so that an interpretation in terms of an ordinary electromagnetic field will always be possible.
We observe that these coefficients associated with the most symmetric extensions are in

one-to-one correspondence with the zero forms used by Vasliliev to describe the ‘unfolded
dynamics’ of the Maxwell equations [19], see also [20].

6. Summary and discussion

We have studied in detail the structure and the particle dynamics of the infinite sequence of
extensions of the Poincaré algebra outlined in [1]. We have seen that the generators of the
non-central extensions belong to tensor representations of the Lorentz group of increasingly
higher rank. We can associate one or more Young tableaux with every extension. Although we
have done the calculations in four dimensions, the extensions found also exist in any dimension
where their symmetry is allowed. We conjecture that the complete set of extensions constitute
an infinite Lie algebra.

We do not have a precise mathematical interpretation for this infinite algebra, but we note
that its generator content is organized in levels like the Lorentzian Kac–Moody algebras that
are conjectured to be a symmetry of supergravity [15, 16]. It is not completely unnatural that
there might be some connection between the two structures, despite the fact that the fields
in the Lorentzian Kac–Moody algebras at level zero include the graviton. Following this
direction, we have studied analogies with the representations of the over-extension of the G2,
G++

2
14 algebras with respect to A3.15 If we disregard the level zero, at level 1 there is a vector

corresponding to Pa, at level 2 an antisymmetric two tensor Zab, at level 3 a mixed generator
that corresponds to our Yabc, but at level 4 only one object that corresponds to S2

abcd exists;
the generator S1

abcd does not appear. At level 5, only T 4
abcde, T

5
abcde appear. At level 6, there

appear only W 5
abcdef ,W 8

abcdef . Therefore we can conclude that only some of the extensions
of the infinite sequence of Poincaré algebras we found appear also at non-zero levels of G++

2 .
We do not know if one can find an infinite algebra that encompasses all the possible Poincaré
extensions.

In order to understand the physical significance of this infinite sequence of extensions
of the Poincaré group, we have constructed an invariant Lagrangian that depends linearly on
the extensions by introducing tensor coupling ‘constants’ that we consider as new dynamical
variables. The physical system described by this Lagrangian is a distribution of charged
particles moving in an external electromagnetic field. The description is approximate: the

13 Consider the Taylor expansion of fab about the origin and let q[ab](cde) denote the coefficients of the cubic term.
When fab satisfies f[ab,c] = 0, these coefficients must satisfy q[abc](de) = 0. These conditions imply that the q[ab](cde)

coefficients have the same YT symmetry as that of the coefficients k(abcd)e , which satisfy k(abcde) = 0, and therefore
the k(abcd)e coefficients determine the part cubic in the coordinates of an antisymmetric tensor fab satisfying f[ab,c] = 0.
14 d = 5, N = 2 pure supergravity using G++

2 was studied in [21].
15 We have used the computer program SimpLie [22] to study the level structure of the corresponding representations.
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particles are described collectively by their multipole moments about the world line of their
center of mass and the field by its Taylor expansion about the same line. New terms in
the approximation series appear with every extension. The multipoles can be considered as
Goldstone bosons. The higher extensions give back-reaction terms describing the effect of the
moments on the world line.

We think that sequential extensions of space–time groups including odd generators, using
the same methods as in this paper, might be useful in constructing theories containing fermions.
We hope to address this point in the future.
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algebras J. Phys. A: Math. Theor. 42 145206 (arXiv:hep-th/0808.2243)
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